
Sorting Wrap-up
Data Structures Intro

Checkout BinaryInteger project from SVN

Be able to describe basic sorting algorithms:
◦ Selection sort
◦ Insertion sort
◦ Merge sort
Know the run-time efficiency of each
Know the best and worst case inputs for each

Basic idea:
◦ Think of the list as having a sorted part (at the

beginning) and an unsorted part (the rest)

◦ Find the smallest number
in the unsorted part
◦ Exchange it with the element

at the beginning of the
unsorted part (making the
sorted part bigger and the
unsorted part smaller)

Repeat until
unsorted
part is
empty

Q1a

Basic idea:
◦ Think of the list as having a sorted part (at the

beginning) and an unsorted part (the rest)

◦ Get the first number in the
unsorted part
◦ Insert it into the correct

location in the sorted part,
moving larger values up
in the array to make room

Repeat until
unsorted
part is
empty

Q1b

Basic recursive idea:
◦ If list is length 0 or 1, then it’s already sorted
◦ Otherwise:

Divide list into two halves
Recursively sort the two halves
Merge the sorted halves back together

Use a recurrence relation again:
◦ Let T(n) denote the worst-case number of array

access to sort an array of length n
◦ Assume n is a power of 2 again, n = 2m,

for some m

Or use tree-based sketch…

Q2, 3, 1b

Understanding the
engineering trade-offs when
storing data

What is "data"
What do we mean by "data type"?
An _____________ of the ____
An interpretation is basically a set of
_______________.
The interpretation may be provided
◦ by the hardware, as for int and double types
◦ by software, as for the java.math.BigInteger type.
◦ by software with much assistance from the

hardware, as for the java.lang.Array type.

Q4-6

A mathematical model of a data type. Specifies:
◦ The type of data stored
◦ the operations supported
◦ the types and return values of these operations
◦ Specifies what each operation does, but not how

it is implemented.

Non-negative integer ADT.
A special value: zero:
Basic operations include succ pred isZero .
Derived operations include plus .
◦ Sample rules:

isZero(succ(n)) false
plus(n, zero) n
plus(n, succ(m)) succ(plus(n, m))

Standard implementation: Binary numbers.
But there are many other possibilities.

Rules are independent of implementation.

Non-negative integer ADT.
A special value: zero:
Basic operations include succ pred isZero .
Derived operations include plus .
◦ Sample rules:

isZero(succ(n)) false
plus(n, zero) n
plus(n, succ(m)) succ(plus(n, m))

Sample Implementation: Unary strings.
4 is represented by "xxxx", 2 by "xx" 0 by ""

Sample Implementation: Reversed binary strings.
4 is represented by "001", 11 by "1101"
zero is represented by "0" or ""
(the latter to make recursion easier) Q7-10

addOne() together
plus() for HW (challenging!)

Efficient ways to store data based on how
we’ll use it

The main theme for the last 1/6 of the course

So far we’ve seen ArrayLists
◦ Fast addition to end of list
◦ Fast access to any existing position
◦ Slow inserts into and deletes from the middle of the

list

Q11

An array.
Size must be
declared when the
array is
constructed
We can look up or
store items by
index
a[i+1] = a[i] + 2;

Implementation (usually
handled by the compiler):
Suppose we have an array of
N items, each b bytes in size

Let L be the address of the
beginning of the array

What is involved in finding
the address of a[i]?

What is the Big-oh time
required for an array-element
lookup? What about lookup
in a 2D array of M rows with
N items in each row?

What about lookup in a 3D
array (M x N x P)?

a[0]

a[1]

a[2]

a[i]

a[N-2]

a[N-1]

La

Q12-16

Array (1D, 2D, …)
StackWhat is "special" about

each data type?
What is each used for?
What can you say about
time required for
- adding an element?
- removing an element?
- finding an element?

You should be able to answer all of
these by the end of this course.

Last-in-first-out (LIFO)
Only top element is accessible
Operations: push, pop, top, topAndPop
◦ All constant-time.
Easy to implement as a (growable) array
with the last filled position in the array
being the top of the stack.
Applications:
◦ Match parentheses and braces in an expression
◦ Keep track of pending function calls with their

arguments and local variables.
◦ Depth-first search of a tree or graph.

Q17-18

Array (1D, 2D, …)
Stack
Queue

What is "special" about
each data type?
What is each used for?
What can you say about
time required for
- adding an element?
- removing an element?
- finding an element?

You should be able to answer all of
these by the end of this course.

First-in-first-out (FIFO)
Only oldest element in the queue is
accessible
Operations: enqueue, dequeue
◦ All constant-time.
Can mplement as a (growable) "circular"
array
◦ http://maven.smith.edu/~streinu/Teaching/Cou

rses/112/Applets/Queue/myApplet.html
Applications:
◦ Simulations of real-world situations
◦ Managing jobs for a printer
◦ Managing processes in an operating system
◦ Breadth-first search of a graph

Q19-21

http://maven.smith.edu/~streinu/Teaching/Courses/112/Applets/Queue/myApplet.html
http://maven.smith.edu/~streinu/Teaching/Courses/112/Applets/Queue/myApplet.html

Array (1D, 2D, …)
Stack
Queue
List
◦ ArrayList
◦ LinkedList
Set
MultiSet
Map (a.k.a. table, dictionary)
◦ HashMap
◦ TreeMap
PriorityQueue
Tree
Graph
Network

What is "special" about
each data type?
What is each used for?
What can you say about
time required for
- adding an element?
- removing an element?
- finding an element?

You should be able to answer all of
these by the end of this course.

A quick preview of
the rest of the list

	CSSE 220 Day 26
	Questions
	Course Goals for Sorting: �You should…
	Recap: Selection Sort
	Recap: Insertion Sort
	Merge Sort
	Analyzing Merge Sort
	Data Structures and Abstract Data Types (ADT)
	Data Types
	Abstract Data Type (ADT)
	Abstract Data Type example
	Abstract Data Type example
	Integer Representation Exercise
	Data Structures
	The most common collection data structure is …
	Some basic data structures
	Stack
	Some basic data structures
	Queue
	Some basic data structures
	Work on MineSweeper

